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Abstract.—Regressions of biological variables across species are rarely perfect. Usually, there are residual deviations from
the estimated model relationship, and such deviations commonly show a pattern of phylogenetic correlations indicating
that they have biological causes. We discuss the origins and effects of phylogenetically correlated biological variation in
regression studies. In particular, we discuss the interplay of biological deviations with deviations due to observational
or measurement errors, which are also important in comparative studies based on estimated species means. We show
how bias in estimated evolutionary regressions can arise from several sources, including phylogenetic inertia and either
observational or biological error in the predictor variables. We show how all these biases can be estimated and corrected
for in the presence of phylogenetic correlations. We present general formulas for incorporating measurement error in linear
models with correlated data. We also show how alternative regression models, such as major axis and reduced major axis
regression, which are often recommended when there is error in predictor variables, are strongly biased when there is
biological variation in any part of the model. We argue that such methods should never be used to estimate evolutionary or
allometric regression slopes. [Adaptation; allometry; major-axis regression; measurement error; phylogenetic comparative

method; phylogenetic inertia; reduced major-axis regression; structural equation.]

Evolutionary regression across species is one of the
major statistical procedures used to study the evolu-
tionary relationship between biological variables and to
test hypotheses about adaptation to environmental vari-
ables (Harvey and Pagel 1991). Over the last decades,
sophisticated statistical models have been developed
to deal with the problem of phylogenetic correlations
between related species, the incorporation of past his-
tory, and issues having to do with observation error and
scaling. Most of these developments have been focused
on solving statistical problems, and the biological inter-
pretations and implications of the methods have often
been ignored. Assumptions made to solve statistical
problems are often incompatible with the biological
processes that motivated the approaches. For example,
the almost universal assumption that the residuals of
a phylogenetic regression evolve as Brownian motion
is made for analytical convenience and is inconsistent
with adaptive evolution (Hansen and Orzack 2005), and
many approaches to deal with the bias that results from
observation error in evolutionary and allometric regres-
sion are based on statistical models that effectively as-
sume that there is no biological error in the fitted model.
In this paper, we will build on the distinction between
biological and observational error introduced by Riska
(1991) and study their joint effects in evolutionary re-
gression models. We will argue that both biological and
statistical considerations are necessary to obtain mean-
ingful evolutionary and allometric regression models.

Observation or measurement error is a serious
concern for most comparative studies (e.g., Pagel and
Harvey 1988; Kelly and Price 2004; Ives et al. 2007).
Often, species data are means of variables that are com-
puted from small samples of individuals. Apart from
errors stemming from nonrandom sampling of individ-

uals from a species, such means have an estimation
error, usually quantified by the standard error of the es-
timate, which will act as a “measurement error” in the
comparative analysis. When such observation error can
be quantified, it should be incorporated into the anal-
ysis to improve precision and to correct possible bias
in the estimated regression slopes. It is, however, in-
strumental to separate observation error from biological
“error,” which may be defined as the true “biological”
deviance from the assumed model relationship. Such bi-
ological deviations will almost always be present simply
because biology is a complex affair. We may postu-
late simple single-factor hypotheses about trait Y being
adapted to environment X and take a nonzero regres-
sion of Y on X as evidence for this hypothesis, but no
real biologist would take this to mean that X is the only
biological source of variation in Y. Instead, the biolo-
gist will expect considerable variation in Y being due to
other, usually unknown, biological sources. Indeed, it is
an implicit premise of phylogenetic comparative meth-
ods that most or all the residual variation is of biological
origin because if deviance from the model was due to
observational error, we would not expect to see phylo-
genetically correlated residuals and thus not need to use
phylogenetic comparative methods at all.

We will start by presenting a biological model for
the evolutionary regression, which can accommodate
either adaptive evolution or allometric constraints, and
then combine this with a model of observation error.
We will quantify the biases that arise from both bio-
logical and observational deviations from the regression
model and show how these can be corrected in the pres-
ence of phylogenetic correlations. Finally, we will show
that biological variation makes major axis and reduced
major axis regression strongly biased and unsuitable
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as estimators of the evolutionary regression parameter
as defined in our model. We also present general formu-
las for correction of bias due to measurement error in
linear models with correlated data.

BIOLOGICAL MODELS FOR THE EVOLUTIONARY
REGRESSION

Consider a biological trait Y that differs among a set of
species. The causes of such differences are usually man-
ifold. Natural selection will operate on Y, but the ex-
act optimum value will depend on numerous ecological
factors that all vary among species in different patterns.
The selection on Y will also be influenced by the states
of other functionally related characters due to corre-
lated selection, and there will be many sources of indi-
rect selection acting on Y due to correlations with other
traits under selection. Species differences in Y could also
arise due to genetic drift and environmental plasticity.
Assuming we knew the exact effects of all these fac-
tors in a species, we could make an exact prediction of
Y for this species, as Y = f(Xi,..., Xu), for some func-
tion f, where the X; are the exact states of the relevant
factors in this species, but in reality, we will have incom-
plete information about the states of the factors. Usually,
an evolutionary regression is done to test the influence
of one or a few focal variables for which we know the
state in each species. If X; is a such focal variable, the
evolutionary regression takes the form

Y =B+ 1 X1 + (X1, ..., Xin), (1)

where (X1, ..., Xn) =f(X1,..., Xm) — (Po + B1X1) are
the biological residuals of the model. Obviously, these
residuals will be different in different species due to dif-
ferent states of the X variables. It seems reasonable to as-
sume that there will be a large number of such variables
with mostly small differences between species, and the
central limit theorem then suggests that the residuals
may approach a normal distribution across species, as
assumed by the standard linear regression model. There
is a complication, however, in that related species may
tend to have similar states of some of their X variables,
thereby giving rise to phylogenetic correlations in the
residuals. Fundamentally, this is the justification for use
of phylogenetic corrections in cross-species regression
models (e.g., Grafen 1989; Ridley 1989; Nee et al. 1996;
Hansen 1997; Price 1997).

To use phylogenetic comparative methods, it is nec-
essary to model the pattern of phylogenetic correlations
in the residuals. This requires a phylogeny with branch
lengths and a process model of evolutionary change
(Hansen and Martins 1996). The standard choice for
this model has been Brownian motion, which may seem
like a reasonable choice if there are many X-factors that
can change at random in any small part of the phy-
logeny (e.g., Grafen 1989). The Brownian-motion model
predicts that the covariance between any two species’
residuals will be proportional to their shared phyloge-
netic branch length and this makes it easy to correct

the regression by use of generalized least squares (GLS)
or maximum-likelihood techniques (Felsenstein 1985;
Grafen 1989; Lynch 1991; Martins and Hansen 1997).

The Brownian-motion model can describe correlated
evolution between traits (Felsenstein 1985), but this is
only one way an evolutionary regression can arise, and
it is not consistent with adaptation of trait to an in-
dependent variable (Hansen and Orzack 2005). In fact,
residuals representing biological deviations from model
predictions may have complex correlation structures
that cannot be separated from the prediction model. We
illustrate this by discussing two specific models for the
evolutionary regression, one based on adaptation and
the other on allometric constraints.

The Evolutionary Regression as an Adaptation

An evolutionary process of adaptation implies a ten-
dency for Y to evolve towards an optimal state predicted
by X. Residual deviations then represent maladapta-
tion and cannot follow Brownian motion, which does
not allow any systematic decrease over time. A simple
stochastic process model that does allow a systematic
tendency for Y to evolve towards an optimum is the
Ornstein—Uhlenbeck process, which models the change
in Y in a infinitesimal time interval d¢, as

dY = —(Y — 0)dt + odW, @)

where dW is white noise representing change in unob-
served residual variables, o is the standard deviation of
these changes, and o > 0 is the “rate of adaptation”
towards the optimum 6, which we model as a linear
“optimal” regression, 8 = by + by X. The exact regression
model predicted by this will depend on how X evolves.
Hansen (1997) derived a weighted regression based on
a priori information on how X was distributed on a
phylogeny such that states of X further down in the phy-
logeny are discounted with a factor that depends on «
(see also Butler and King 2004). In this model, the resid-
ual covariances will decrease exponentially with phylo-
genetic distance at a rate proportional to «. Hansen et al.
(2008) derived an evolutionary regression from the as-
sumption that X changes like Brownian motion. In this
case, the residual covariances follow a complex function
of the phylogeny that also depends on the regression pa-
rameter b; (see Hansen et al. 2008 for exact equation).
Importantly, the evolutionary regressions predicted by
these models are more shallow (closer to zero) than the
optimal regression slope, b;. More precisely, the
predicted evolutionary regression is

Y = o + pb1 X, 3)

where p=1 — (1 —e~*)/at is a “phylogenetic correc-
tion factor” that depends on o and on the distance,
t, from the start of the adaptive radiation to the observed
tip. This p approaches unity when the rate of adapta-
tion, «, is very high, but if the rate of adaptation is slow,
the evolutionary regression slope, 31 = pbi, becomes
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FIGURE 1. Effects of phylogenetic inertia on the expected regres-
sion slope. The solid line is an assumed optimal regression in which
species are uninfluenced by ancestry. The dashed lines show the ex-
pected evolutionary regression slope with increasing levels of phylo-
genetic inertia measured as a phylogenetic half-life (¢, = Log[2]/«),
which increases from t; /, = 20% through t; ;, =50% to t; /, = 100% of
the distance to the root of the phylogeny as we go from the steeper to
the most shallow dashed line. The corresponding values of the phy-
logenetic correction factors are p = 0.80, p = 0.57, and p = 0.37, re-
spectively. A value t;/, = 100% means that a species that has evolved
in a constant environment from the root of the tree is expected to be
midway between its ancestral value and its optimum in the constant
environment.

shallower than the optimal slope, by, as illustrated in
Figure 1. The intercept 3¢ is also a complex function
of the model parameters and not generally equal to the
optimal intercept, by.

In summary, the evolutionary regressions predicted
from simple models of systematic evolutionary adapta-
tion of a dependent variable (= trait) to an independent
predictor variable have two features not found in stan-
dard phylogenetic regression models. First, residual co-
variances are not proportional to phylogenetic branch
lengths but follow more complex functions dominated
by an exponential decrease that depends on both the
rate of adaptation and the slope of the regression. Sec-
ond, the evolutionary regression depends on the rate
of adaptation and is more shallow than the optimal re-
lation between the variables. These two features have
a common cause in maladaptation of the species. If
species cannot adapt instantaneously, then they will de-
viate from the optimal relationship in the direction of
their ancestors, thus producing a more shallow evolu-
tionary regression, and related species will deviate in
a similar way, thus causing phylogenetically correlated
residuals. In this situation, the residual covariance struc-
ture should not be modeled independently of the regres-
sion, as done in essentially all phylogenetic regression
models used to date.

The Evolutionary Regression as an (Allometric) Constraint

Alternatively, a cross-species regression may reflect
a constraint on the independent evolution of the two
variables. This is perhaps most obvious in the case
of allometric relationships. When size-related traits are

plotted against each other on a log-log scale, they of-
ten follow a linear relation both within and among
species. A cross-species (evolutionary) allometry can
arise by at least two distinct mechanisms. One hypoth-
esis is that it reflects adaptation to a functional scal-
ing relation between the two traits. In this case, the
observed evolutionary allometries may be shallower
than the optimal relation between the traits, as de-
scribed by the adaptation model above. Another hy-
pothesis is that the evolutionary allometry results from
the constraints of an underlying within-species (static)
allometry. Static allometries can result from common
growth regulation (Huxley 1932; Savageau 1979), and
if this regulation is fixed, the traits become constrained
to change in concert. This differs from the adaptation
model in that no evolutionary deviation from the re-
gression line is possible, and there is no meaningful
distinction between an optimal and an evolutionary
regression.

The question that arises is how to interpret residual
deviations under the constraint model. Observation er-
ror will be one source of deviation and may bias the
slope as described later. Biological error may also arise
if the allometric relation is not perfect. Consider a trait Y
that consists of two components, one that depends in a
fixed manner on a trait X and one that depends on a set
of other unknown variables as above. As an example, if
Y is the volume of the organism and X its length, then it
is reasonable to expect that any change in X would be ac-
companied by an automatic instantaneous change in Y,
but Y could also change due to evolutionary changes in
shape of the organism, and this could cause deviations
from the (log-log) regression of Y on X. This leaves open
the evolutionary dynamics of the residuals. If shape
changes are evolutionarily independent from the or-
ganism’s size, then these deviations could behave like
Brownian motion, and their covariances could be pro-
portional to shared branch lengths. Perhaps more realis-
tically, shape could tend to evolve around an optimum
and make the the residuals better represented by an
Ornstein—Uhlenbeck process, but this would not be cou-
pled with a biased regression slope as in the adaptation
model.

THE STATISTICAL MODEL

The standard setup for the evolutionary regression
model is

y= DB +I,1 NN(O,V), (4)

where y is a vector of dependent variables, D is
a design matrix containing the predictor variables,
B is a vector of regression parameters to be esti-
mated (including an intercept), and r are residuals as-
sumed to be normally distributed with mean zero and
variance matrix, V. If the residuals are phylogeneti-
cally correlated, these correlations are modeled as off-
diagonal elements in the V matrix, and an unbiased
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minimum variance estimator of B is then the GLS
estimator

B=D'V'D)' D'V ly. (5)

Note that both the residual variance matrix and the
design matrix may depend on unknown parameters, as
o in the adaptation model. This can be solved either
by estimating all parameters jointly by maximum like-
lihood or by estimated GLS where equation (5) is used
to estimate B based on an initial assumption about the
other parameters, which are then estimated by max-
imum likelihood conditionally on B, whereupon the
scheme is iterated until convergence (e.g., Martins and
Hansen 1997).

OBSERVATION ERROR

In an evolutionary regression analysis, both depen-
dent and predictor variables are often vectors of trait
means or other sample statistics from the individual
species. These statistics are necessarily subject to sam-
pling error, which will act as observation (measurement)
error in the regression analysis. Such observation errors
will reduce the precision of parameter estimates, make
confidence intervals too narrow, and bias regression
slopes when they occur in predictor variables (Fuller
1987; Buonaccorsi 2010). Due to the small sample sizes
for individual species in many comparative analyses,
these problems can be substantial. Many comparative
studies also have very different sample sizes for dif-
ferent species and can be improved by weighing the
species with their reliability.

We may illustrate these effects with a simple model
with one predictor variable (as in Riska 1991; Kelly and
Price 2004). Let y, and y; be the observed and true
values of the response variable, and let x, and x; be
the observed and true values of the predictor variable.
Then,

Yo=Yt te, (661)

Xo =Xt + U, (6b)

where e and u are random observation errors. As in
the “classical model” of measurement error (Fuller 1987;
Buonaccorsi 2010), we assume that e and u are indepen-
dent of y; and x;, and note that this makes them cor-
related with y, and x,. By assumption, the relationship
between the true values of the two variables is

Vi = Po+ P1xt + 714, (7)

where 39 and f3; are parameters modeling the predicted
biological relationship between y; and x;, and r; is the
true (biological) species deviance from the predicted re-
lationship. From the above, the relationship between the
observed variables will be

Yo=Yi+e=Po+Prx;+7ri+e=Po+P1x, — Pru+7;+e. (8)

Thus, we see that the overall residual of the regression
of observed response variables on observed predictor
variables has three components:

r=ri+e— Piu. (9)

Consequently, the residual variance matrix of this
regression model also has three components:

V=V:+V,+p3V (10)

ulx?
which we write as matrices (bold face) to allow for
covariances between the residuals. The matrix V; is
the biological variance around the predicted relation-
ship between the true variables, and this is the com-
ponent that we expect to have a phylogenetic structure
(i.e., off-diagonal covariances derived from the assumed
model of evolution). The observation variance in the re-
sponse variable, V,, can be added to this. The effects of
observation variance in the predictor are more compli-
cated. First, since the observation error in the predictor
is correlated with the observed predictor, we should not
use the raw observation variance, V,, but rather V,,,
the observed variance conditional on the x, (computa-
tion of this is given below). Second, this variance matrix
needs to be multiplied with the square of the regression
slope, and this suggests an iterated estimation proce-
dure, which can be incorporated into the estimated GLS
procedure discussed above.

Including the observation variance by basing the GLS
on equation (10) improves precision of estimates and
gives more correct confidence intervals, but it does not
correct the bias in the regression slope that results from
error in the predictor variables. In the appendix, we
show that conditioning on the observed predictor vari-
ables, and assuming a normal distribution of the obser-
vation error in the predictors, the mean and variance of

the estimated regression slope (3; are
_ xg v-1lv, Vx_1 X,
xI'V-1x,

E[fy %] ~ (1 ) B1, (11a)

1

Var[B1]x,] = TV’
0 0

(11b)

where x, is the vector of observed predictor variables,
which we assume are centered on their means, V, is
their variance matrix, including the observation vari-
ance, V,,and V=V,;+V, + B% V.« is the total residual
variance with V,, =V, — V,)V- 1v,. Thus, the larger
the observation variance in the predictor variables, the
more the estimated slope is expected to diverge from
the true slope (Fig. 2). Usually, the estimated slope is
too shallow and tends to get increasingly shallow as
observation variance increases relative to the total vari-
ance in the predictor. The bias disappears when V,, ap-
proaches zero, thus confirming that the GLS estimator is
unbiased with observation error only in the dependent
variable. If both the observation errors and the predic-
tor variables are independent and homoscedastic, that
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True slope

0.0 05 1.0 15 20
Predictor

FIGURE 2. Effects of observation error in the predictor variable on
the expected regression slope. The solid line is the true regression. In
(a), the dashed lines show the effects of letting 10%, 20%, and 50% of
the variance in the predictor variable be due to observation error. In
(b), we show the effects of combining phylogenetic inertia and obser-
vation error in the predictor. The steeper dashed line is the expected
evolutionary regression with t; ;, = 100%, as in Figure 1, and the shal-
lower dashed line shows the effects of making 50% of the predictor
variance due to error. The combined effect is a slope only 18.5% of
the optimal and "error-free” regression slope. For ease of illustration,
we have assumed that the biological and observational errors in the
predictor are homoscedastic and uncorrelated.

is, when V, = 02I and V, = 02I, then equation (11a)

reduces to

o2

E[Bl‘xo] ~ (1 - 0_7%

)B1, (12)
which we recognize as the standard formula for un-
correlated data with observation error when o2 and
o2 are estimated as the appropriate sums of squares
(e.g., Fuller 1987). We note that this holds even with
correlations in the residuals as long as the predictor vari-
ables are not correlated. It also holds in the more general
situation in which V,, = 62A and V, = 02A for a com-
mon symmetric positive definite matrix A.

The fact that the bias depends on the correlation struc-
ture of the predictor variables shows that the bias can-
not be corrected without making assumptions about
the predictors” variance structure, which will usually
require a model for their evolution.

It is common to quantify the bias from known obser-
vation error in the predictor variables with a reliabil-
ity ratio, K, defined as the ratio between the true and
the observed sums of squares for the predictor variable.
The true sum of squares is estimated by subtracting the
observation variance from the observed sum of squares.

For uncorrelated homoscedastic data, K = 1 — ¢2/02
(Fuller 1987). With correlated data, the corresponding
reliability ratio is

XOTV’quV;lxo

K=~1
xI'V-1x,

(13)

In contrast to the standard situation, it is possible to
produce negative K, and even K > 1 if there are asym-
metries in either observational or biological variation
across species.

Equations (11a), (11b), and (13) are approximations
obtained by assuming that certain averages of the pre-
dictor variables are zero (see appendix). If the predic-
tor variables are not centered on their mean, the exact
equation (A.6) in the appendix must be used, and then
there can also be significant bias in the intercept. We also
assume that the relevant variance matrices are known
without error. Uncertainty in the variance matrices in-
cludes errors in the assumed evolutionary models, in the
phylogeny, and in the estimated observation variance,
but their effects are beyond the scope of this paper.

In the appendix, we also give general expressions for
bias in models with several predictor variables with
observation errors that can be correlated both across
predictors and species. In general, observation error in
one predictor will carry over and cause biases in the
coefficients pertaining to other predictors. For uncor-
related data, there is an important exception to this
in that observation error in one predictor will not
bias the coefficients of another uncorrelated predictor
(e.g., Buonaccorsi 2010). In the appendix, we show that
this generalizes to models with correlated residuals but
not to cases in which the predictor with error is phyloge-
netically correlated or heteroscedastic. This means that
observation errors in random uncorrelated homoscedas-
tic predictors will not bias the coefficients of any fixed
effects in the model (asymptotically and provided the
predictors are centered on their means). Beyond this,
there is not much that can be said about sign and magni-
tude of the bias with errors in several predictors (Gleser
1992). In the words of Aickin and Ritenbaugh (1996):
“there do not seem to be any rules of thumb that would
permit one to make even qualitative statements about
the nature of this bias.” The situation is not less compli-
cated in the presence of phylogenetic correlations.

Correcting the Bias

The bias due to observation error can be corrected by
use of the reliability ratio, K, as follows.

Bl,Corrected = %7 (14)
_ 1
 KXIV-ly,’

with K as in equation (13) or more accurately as in equa-
tion (A.6) in the appendix. To compute this, we must
specify the matrices V,, V,,, V,,and V=V + V,+ B%Vu‘x.

Var[Bl,Corrected |X0} (15)
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All these except V, are used in the GLS estimation
in the first place. The V, is the variance matrix of
the vector of observed species predictor variables, x,,
which due to the assumed independence of x; and u is
V, = Vy + V,, where Vy; is the true variance matrix
of the predictor, which will typically have a phyloge-
netic structure that must be modeled. For example, as-
suming that the predictor variables evolve as Brown-
ian motion along the phylogeny would make V,; a ma-
trix in which the ijth element would be proportional
to the shared branch length of species i and species j.
The constant of proportionality has to be estimated from
the data. If the predictors are treated as fixed effects,
V, would be their empirical variance matrix. Once all
these matrices are specified, the reliability ratio and the
bias-corrected estimator can be computed. Numerical
simulations reported in online File A (deposited in
Dryad, doi:10.5061/dryad.r76cm3bn) indicate that this
procedure is effective in removing the bias. An exten-
sion to multiple predictors and fixed effects is presented
in the appendix.

Although it is tempting to correct a bias, a correc-
tion will not always produce a more accurate estimator
(online File A). Even when the measurement variance
is known, a bias correction can decrease the precision
of the estimator, and in addition, there is the error in
the reliability ratio itself. In the appendix, we derive a
criterion for a bias-corrected slope to be more accurate
than an uncorrected slope in the sense of having a lower
mean squared error:

g K2(1—K)
9B VTN fr 1<K <1, 16
B 1+K 16)

where 0§ = 1/(x; V~'x,) is the estimated variance of
the uncorrected estimator of the slope and K is the re-
liability ratio as above. For |K| > 1, the bias-corrected
estimator is always more accurate. The left-hand side of
equation (16) is the relative standard error of the uncor-
rected slope estimate and can be estimated by fitting in
an estimator of 3;. As illustrated in Figure 3, for K in the
realistic interval between zero and one, it will never pay

030
025
020

0.15

0.10

Relative error

0.05

0.00

0.0 02 04 0.6 08 10
Reliability ratio, K

FIGURE 3. Criterion for bias correction to improve accuracy. In
the gray area under the curve, the mean squared error of the bias-
corrected slope estimate is less than the mean squared error of the un-
corrected slope estimate. The relative error refers to the uncorrected
slope. This criterion does not include the effects of uncertainty in the
estimate of K. Based on equation (16) in the main text.

to correct if the relative error of the slope is above 30%,
but if the relative error is less than 10%, bias correction
will improve accuracy over a wide range of K (from 0.11
to 0.98).

While equation (16) provides a rule of thumb for
when to correct, it should not be the only considera-
tion. The criterion does not include the effects of error
in the reliability ratio, which will decrease the accuracy
of the bias-corrected estimator, and both the observation
variance and the criterion itself are estimated with er-
ror. Hence, a conservative approach is advisable, and
particularly so when the estimates of the observation
variances are unreliable. Bias correction is also not only
a statistical consideration. It is more important when
slopes with different levels of error are to be compared
against each other, and in such situations, it may be ad-
visable to correct bias even if it reduces accuracy.

As will be described elsewhere, we are implement-
ing the above corrections into the program package
Slouch (Hansen et al. 2008). This can fit the adapta-
tion and constraint models with observation error based
on iterated GLS. In online File B (deposited in Dryad,
doi:10.5061/dryad.r76cm3bn), we also provide R-code
to implement observation error into standard GLS re-
gression. Since bias correction may not always improve
accuracy, we recommend reporting parameter estimates
without bias correction and the estimated reliability ra-
tio, so that a possible bias can be evaluated when crucial
for argument.

Estimating Observation Variance

In comparative studies based on species means, ob-
servation variances for correction will typically be ob-
tained as the squares of the published standard errors
of the means. If the sample sizes of individual species
are small, such standard errors may be unreliable. In
such cases, it might be better to estimate an average
across the different species (Ives et al. 2007; Labra et al.
2009; online Files A and B). First, the within-species
sample variance is estimated as a sample-size-weighted
average of the sample variances of each species; that
is, as 02, = L;02,(n; — 1)/Zi(n; — 1), where o2, is the
sample variance of species i and n; is the sample size
of species i. Then, the measurement variance of each
species is estimated as 02,/n;. This procedure assumes
that within-species variances are similar across species,
and we recommend it for species with sample sizes less
than about 20 when this assumption is not obviously vi-
olated. Usually, there will be no covariance in observa-
tions across species, and the V, and V,, matrices will be
diagonal. Kelly and Price (2004) and Felsenstein (2008)
present further methods for estimation and incorpora-
tion of within-species variation in comparative studies.

BIOLOGICAL ERROR AND PHYLOGENETIC STRUCTURE
IN PREDICTOR VARIABLES

Observation error in the predictor variables is not the
only way to get a biased estimate of the regression slope.
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Just as we may distinguish between observation error
and biological error in the model relationship between
Y and X, we can make a distinction between observa-
tion error and biological error in the predictor variable.
Consider a case in which the true biological model is
Y = B¢ + p1Z, for some variable Z, but we observe not
Z,but X = Z + H, where H may be considered a bio-
logical error. This situation may arise when the relation
between Y and X depends only on one component of
X. For example, Y may be adult brain size and X adult
body size, but adult brain size may depend only on
prenatal or juvenile growth and be unaffected by sub-
sequent growth of the organism. Such biological error
will have effects that are identical to observation error
in the predictor variable but its interpretation is quite
different. While the biological error makes us expect a
more shallow regression of Y on X, whether this is to
be considered a “bias” depends on the exact claim one
wants to make. Gould (1975), Lande (1979), and Riska
(1989, 1991; Riska and Atchley 1985) have argued for
different versions of this mechanism as an explanation
for the relatively shallow allometric regressions of brain
sizes on body size. We also note that such biological er-
ror is likely to be phylogenetically structured and thus
suggests a nondiagonal V,, matrix.

Phylogenetic structure in the predictor variables has
consequences that are routinely ignored in evolutionary
regression studies. For example, it has become standard
practice to check for phylogenetic signal in the response
variable so as to decide how to do corrections for phy-
logeny. This is based on a statistical misunderstand-
ing, as it is the phylogenetic correlations in the model
residuals that need be accounted for (e.g., Hansen and
Orzack 2005; Labra et al. 2009; Revell 2010). Because the
biological variation in the predictor variables may be
phylogenetically structured, this will automatically gen-
erate a phylogenetic effect in the response variables,
even when there is no phylogenetic structure in the
model relation (i.e., in the V; matrix), and in this situ-
ation, a nonphylogenetic regression would be the cor-
rect approach. See Labra et al. (2009) for illustration and
further discussion of this point.

ALTERNATIVE REGRESSION MODELS

The bias that results from observation error in stan-
dard least squares regression has led to the popular-
ity of alternative regression models such as reduced
major axis regression and structural equation modeling
(reviewed in Warton et al. 2006; Smith 2009). These ap-
proaches have, however, not been developed to deal
properly with correlated residuals, and their application
to species data has thus been problematic. This situation
has recently improved through the work of Ives et al.
(2007). There is, however, a deeper problem with these
alternatives in that they do not account for biological er-
ror in the regression model. Often, they are motivated
by the argument that there is error in both the depen-
dent and the independent variable, and simple ratios of
variance in Y and X are used to pick the “right” deviance

from the model prediction to minimize. For example,
in their influential review of phylogenetic comparative
methods, Harvey and Pagel (1991) argued that major
axis and reduced major axis regression are more appro-
priate than standard regression because they allow error
in both the X and the Y variables. There is no distinction
between biological and observation error in their argu-
ment, and their support of structural equations is im-
plicitly based on all the deviance from the model being
due to observation error. Above we showed how stan-
dard regression models can be adjusted to account for
observation error. We will now show that the two most
common alternative regression methods are unsuitable
when there is biological error in the regression. For con-
venience, we will ignore phylogenetic correlations (and
drop matrix notation, bold face) in this section, as it
makes no difference to our argument.

We start with reduced major axis regression. The re-
duced major axis estimate of a regression slope of Y on
X is simply the square root of the ratio of the variances
of the two variables (with sign determined by the sign
of their correlation). That is,

Var[y,)
Var[x,] ’

Prma = (17)

which by our model (8) of biological and observation
error in both y, and x, would be

. B%th +Vi+V,
Boma =\ v (18)

Ignoring estimation error in the variances in equation
(17), Prma equals 31 if Vi =V, =V, =0. That s, if the true
value of X is the only source of variation in Y, but note
that the existence of any variation in Y independent of
X or in X independent of Y, be it biological or observa-
tional, renders B,m, biased (unless V;+V, = B2V,, which
is clearly coincidental). As illustrated in Figure 4, this
bias may be large when V; is large, which is likely to be
the typical situation for evolutionary regressions. Note
also that the 3;ma will typically be large even when (34
is close to zero. This problem is not solved by Ives et al.
(2007) phylogenetic correction of the reduced major axis
method based on using phylogenetically weighted sums
of squares to estimate Var[y,] and Var[x,] because these
generalized sums of squares can be decomposed as in
equation (18).

Model II or major axis regression is another com-
monly used alternative to standard regression. In this
case, the regression slope of Y on X is estimated as the
slope of Y on X of the first principal component of the
two variables (which must be expressed in the same
unit). An estimator of this is (Kuhry and Marcus 1977):

Var[y,] — Var[x,]

+1/(Varly,] — Var[x,])? + 4Cov[y, x,?

Pma = ZCOV[yo,xo] .(19)
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FIGURE 4. Illustration of expected bias in alternative regression models. The expected slopes of, respectively, major axis (a and c) and reduced
major axis (b and d) are plotted against the level of residual (biological) variance, V;, in the model as measured in units of the biological variance
in the predictor variable, Vy; (i.e., the x-axis is Vi/Vy). In (a) and (b), the true slope (marked by solid line) is 1, and in (c) and (d), it is 0.1. The
four dashed lines in each figure illustrate effects of different levels of observation variance, Vy, in the predictor variable, from top to bottom
Viu=0,V, =025Vy, Vi, =05 Vy, and V;, = Vy. Observation variance in the dependent variable can be added to V. Based on equations (18)

and (20) in the main text.

With our model, we have Covly,,x,] = pVy, Var[y,] =
B*Vy + Vi + V,, and Var[x,] = Vy + V,,. This gives

([3% - 1)th + Vt + Ve - Vu
(B3~ Vi + Vi Ve — V)2 +4p2V2,

[sma = 2[31 th . (20)

Ignoring estimation errors of the moments in equation
(19), this equals B; if Vi + V, = V,;; that is, if the sum
of the biological variance around the model and the
observation variance in the response variable equals
the observation variance in the predictor variable. Be-
cause the biological variance, V}, is likely to be large in
most evolutionary regression models, this only seems
realistic when V,, also includes biological error in the
sense discussed above (i.e., variance in the parame-
ter H). For most realistic combinations of parameters,
however, fm, will be a poor estimator of ; (Fig. 4).
As an example, consider the not unrealistic situation in
which measurement variances are zero and V; = Vy,

then Bma = ([31 + /B3 + 4) /2, which will typically be

seriously wrong. In general, there will be an upward
bias (steeper slope) as long as biological variance, V;, is
larger than the observation variance of the predictor.
Although this shows that major axis and reduced ma-
jor axis regression will practically never be good choices
for estimating an evolutionary regression slope, a gen-
eral structured relation model could work by including

biological variance in its free variance ratio parameter,
A. The model is (Kuhry and Marcus 1977):

Var[y,] — AVar[x,]
+\/(Var[yo] — AVar(x,])? + 4ACov|[y,, X,)?
2Cov [y, X,]

Bsr = ) (21)

which with our assumptions gives
(B2 =NV + Vi + V, — AV,
/(B2 = MV + Vi + Ve — AV, )2 + 4ABIVE,
Zﬁlvxt '

Bsr =

(22)

Choosing the value A = (V; + V,)/V, for the variance
ratio parameter would then make (s a candidate esti-
mator of (31, although this requires an estimator of V;,
which for an evolutionary regression would depend on
process parameters, as discussed above. Ives et al. (2007)
showed how to incorporate known among-species cor-
relations in these models but did not consider biological
variance in their implementation of A.

DISCUSSION

Our analysis reveals and quantifies three distinct
sources of bias in the regression slopes estimated from
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the phylogenetic comparative method based on GLS.
The first is due to a difference between the optimal rela-
tion between the variables and the observed evolution-
ary regression, which will be more shallow if the species
have not had time to adapt perfectly to the optimal
relation. This can only be considered a statistical bias if
the goal is to estimate the evolutionary optimal relation
between the variables. It is not a statistical bias in the
evolutionary regression per se. This bias particularly
matters if the goal is to test a prediction from an opti-
mality model or if a comparison is to be made between
different groups that may have had different amounts of
time available for adaptation (e.g., different taxonomic
levels). In such situations, the bias can be quantified and
corrected by use of the phylogenetic correction factor, p,
introduced by Hansen et al. (2008). See also Burt (1989)
and Deaner and Nunn (1999) for other ways of quan-
tifying this bias. The second bias is due to observation
error in the predictor variables, which typically leads
to a more shallow regression slope. This bias is impor-
tant if observation error constitutes a significant com-
ponent of the total variation in the predictor variables.
Although a formal correction for this bias, known as the
reliability ratio or attenuation factor, K, has long been
available in the statistical literature (e.g., Fuller 1987), it
has rarely been used in cross-species regression studies
(Taper and Marquet 1996; Borrell 2007 are two excep-
tions). In this paper, we have derived a general phyloge-
netically corrected reliability ratio, which can be used to
assess the bias resulting from known observation vari-
ance provided one has an explicit model for the true
variation in both the response and predictor variables.
The third bias is due to biological “error” in the predic-
tor variables, which occurs when only a component of
the observed predictor variable is causally related to the
response variable. If the predictor can be decomposed
into its causal and noncausal components, this bias can
also be corrected by treating the noncausal variance
as measurement variance in the phylogenetic reliabil-
ity ratio. Even if such decomposition may rarely be
possible without direct knowledge of the parts, biolog-
ical error in the predictor has important implications
for the interpretation of the evolutionary regression,
and our formalization may help draw attention to this
possibility.

It is illustrative how all these sources of bias have ap-
peared as possible explanations of the observation that
evolutionary regression slopes are often more shallow
on lower than on higher taxonomic levels (e.g., Martin
and Harvey 1985). Explanations based on evolutionary
lag, or maladaptation, being more pronounced at lower
taxonomic levels have been suggested by, for exam-
ple, Burt (1989), Deaner and Nunn (1999), and Hansen
et al. (2008), explanations based on biological error in
the predictor being relatively more important on low
taxonomic levels have been suggested by, for example,
Lande (1979) and Riska (1991), and explanations based
on observation errors being relatively more important
on lower taxonomic levels have been suggested by, for
example, Pagel and Harvey (1988, 1989). What combina-

tion of these mutually consistent explanations is correct
is an empirical question that must be assessed on a case-
by-case basis.

Evolutionary regressions can be generated by a va-
riety of mechanisms. We have outlined two generic
mechanisms representing adaptation and constraint.
The main difference between these is that the adapta-
tion model has a necessary link between correlations
in residual deviations and bias in the estimated slope,
whereas this link, and indeed the bias, is absent in the
constraint model. The adaptation model also predicts
some form of exponential decay of the residual covari-
ances. This is possible, but not necessary, under the
constraint model, which may also be consistent with
residual covariances that depend only on shared branch
lengths as under Brownian motion. The choice between
these models should be based on biological more than
statistical considerations. If one wants to test an op-
timality model or functionality prediction, one should
use the adaptation model. If one wants to test a con-
straint hypothesis or simply correct for allometric in-
fluence of size on a trait, then the constraint model is
appropriate.

We are far from the first to discuss how observation
error or within-species sampling error can be included
in the phylogenetic comparative methods. Various ex-
plicit methods for doing so have been presented by
Lynch (1991), Martins and Hansen (1997), Housworth
et al. (2004), Ives et al. (2007), Adams (2008), Felsenstein
(2008), Lajeunesse (2009), and Hadfield and Nakagawa
(2010), and there are numerous discussions and evalua-
tions of the problem (e.g., Pagel and Harvey 1988; Kelly
and Price 2004, 2005; Harmon and Losos 2005). Of these,
Ives et al. (2007) present the most detailed and general
approaches, including methods for incorporating obser-
vation error into general structural equations and phy-
logenetic effect estimation. Despite this, we perceive a
disconnect between discussion of statistical methods on
one hand and conceptual discussion as to the biological
meaning of residual deviations on the other. Our aim
in this paper has been to describe the complex distinc-
tion and interplay between biological and observation
error as explicitly as possible and also to present formu-
las to quantify the various biases in the phylogenetic re-
gression. Note also that our corrections for observation
error are not restricted to comparative studies, but are
completely general, and can be used with any GLS re-
gression model regardless of the source of observation
error. They do not apply to evolutionary correlation co-
efficients, however, which are generally biased by obser-
vation error in both variables (Adolph and Hardin 2007;
Felsenstein 2008).

This approach presupposes that an a priori estimate
of the observation variance is available. In comparative
studies based on means, this will typically be based on a
standard error of the mean. Arguably, this will often un-
derestimate the observation variance, which could also
include error due to various forms of nonrandom sam-
pling of individuals and population structure, but this
does not mean that what is available should not be used.
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We warn again, however, that standard errors computed
from small samples are unreliable and should not be
used uncritically. We also note that there is a consid-
erable literature on how to deal with observation error
when the observation variances are not directly known.
This is all based on some form of incomplete informa-
tion, for example, assumptions about the ratio of the
observation variances of the dependent and indepen-
dent variables (Fuller 1987). Most of these approaches
will run into problems if there is biological error in the
model, and it seems to us that the best strategy in prac-
tice will be to obtain direct estimates of the observation
variances.

It should be clear from our analysis that major axis
and reduced major axis regression are not acceptable es-
timators of evolutionary regression slopes when there
is biological error in the model. Still, these methods,
and reduced major axis in particular, are so common
that their users often do not even bother to give a jus-
tification (Smith 2009). This situation remains in the
face of regular criticisms (e.g., Seim and Seether 1983;
Kelly and Price 2004; Smith 2009). Kelly and Price (2004)
show by example how both these methods give results
that are far away from maximum-likelihood estimates
in three biological systems in which biological error
is present.

Our analysis indicates that reduced major axis slopes
can only be reliable when we have a near perfect relation
between the two variables; that is, when neither biolog-
ical nor observation errors are present. With any form
of error, a correspondence between the reduced major
axis and an underlying evolutionary regression will be
coincidental. In our opinion, reduced major axis regres-
sion should never have been used to estimate evolution-
ary or allometric regression slopes, and every published
result based on this method needs to be reconsidered.

Major axis regression is in much the same situation
and can only be considered reasonable as a rough esti-
mate when the residual variation of the model is much
less than the true predictor variation. General struc-
tured relations can be used if biological variance is prop-
erly included in the variance ratio parameter, but we
see no advantage over standard phylogenetic regression
analysis with bias correction.

This does not mean that these methods are not accept-
able as estimators of other parameters. The reduced ma-
jor axis may be a sensible estimator of the ratio between
the standard deviations of two variables. The major axis
regression should be regarded as an estimator of the
slope of the first principal component of the two vari-
ables. The first principal component is an important de-
scriptor of the relationship between variables, and this
shows that major axis regression has an important role
to play. The problem is simply that the slope of the ma-
jor axis is not the same parameter as the regression slope
represented in our model (1). We thus want to rediag-
nose the problem from “what is the best estimator?”
to “what parameters are we estimating?” In this per-
spective, it is clear that the alternative regression meth-
ods are not statistical alternatives that should be used

when there are particular patterns of error variance, but
biological alternatives that should be used when there
are different biological questions (cmp. Houle et al.
2011). Warton et al. (2006) and Smith (2009) diagnosed
the situation similarly, arguing that the choice of re-
gression methods should be guided by biological and
not statistical considerations, but we disagree with their
specific recommendations for doing so. Smith’s (2009)
recommendations for the use of reduced major axis
seem for the most part to call for major axis regres-
sion, which he did not consider, and the recommenda-
tions in Warton et al. (2006) are not based on explicit
models of biological error and are not supported by
the results in Kelly and Price (2004) and the present
paper.

In summary, when the biological goal is to estimate
a linear causal effect of a predictor variable X on Y, as
for example, when we study adaptation of a biological
trait Y to an environmental variable X, then standard
(GLS) regression methods should be used. Alternative
major axis and reduced major axis regressions should
never be used in this situation regardless of the pattern
and type of error variation in the variables. This also ex-
tends to the standard allometric regressions of Log Y on
Log X, where X is body size, when the goal is to esti-
mate the allometric exponent, b, in the equation Y = aX?.
The presence of either biological or observational error
in the variables of these regressions is indeed a statistical
problem that should be accounted for, but this should
be done within the framework of the phylogenetic GLS
regression, and the methods presented in this paper
provide the basic tools for doing so.
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Supplementary material, including data files and/or
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APPENDIX
Consider the model
y=y,+e,e~N(0,V,),
D =D, + U, vec[Dy] ~ N(a, V;), vec[U] ~ N(0,V,),
y, = D¢ B + 1,1, ~ N(0,Vy), (A1)

where y is a vector of n observations of the dependent
variable, D is an observed n x m design matrix, e is a vec-
tor of n observation errors in the dependent variable, U
is an nxm matrix of observation errors in the elements of
D, y: is an vector of n true values of y, D; is an n x m ma-
trix of true values of D, B is a vector of m true values of
the parameters to be estimated, 1; is a vector of n residual
deviations in the true model, and the vec operator forms
a vector by stacking the columns of its matrix argument.
We assume that e, Dy, U, and r; are independent of each
other and that all variance matrices are positive definite,
except that V; and V,, may be block matrices with zero
blocks corresponding to fixed effects and variables with-
out measurement error, respectively.

To estimate the parameter vector, we use the model
y= DB + r, where the residual vector, r, is assumed to
have a variance matrix V= V; + V, + Var[UB|D] = V; +
V. + L;Z;BiB;Vuij, where V,; is the appropriate subma-
trix of V, — V,, (V; + V)~ V,, that contains the between
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species covariances in the observation errors of predic-
tors i and j. Conditional on V and D, the naive GLS
estimator of B is

=D V'D)'D'V'y=(D'V'D) ' D'V DB +1 +e)

=B+ (D' V'D)'D'V (- UB +r +e). (A.2)

The expectation of this conditional on the observed
values of the predictor variables is

EBD]=(1— (D'V'D)"'D'VE[UID]))B, (A.3)

where Iis an m x m identity matrix. It remains to calcu-
late E[U|D]. To do this, we use the vectorized form and
the assumptions of normal distributions and indepen-
dence

Elvec[U]|D] = Cov|vec[U], vec[D]]Var[vec[D]] ~ (vec[D] — a)

=Vu(Vy+ V)™ (vec[D] — a), (A4)

where we have used Cov[vec|[U], vec[D]] = Cov|vec[U],
vec[U] + vec[Dy]] = Var[vec[U]] = V,,. Also note that
we have used generalized inverse (denoted by “~”) to
account for fixed effects without biological and obser-
vational variance in V, and V,. Using equation (A.4) in
equation (A.3) gives

E[BID]= KB=(I— (D'V'D)"'D'Vv!
x vec [V, (V4 + V.,) " (vec[D] — a))B, (A5)

where vec™! denotes the inverse of the vec operator. To
use this, we need to estimate the vector a, which con-
tains elements of two types. One type is simply the val-
ues of fixed effects in D, and the corresponding elements
in vec[D] — a are zero. The other type is means of the
random effects in the model, and like the various vari-
ance matrices in the model, these need be estimated.
Most naturally, this is done as a GLS mean over the pre-
dictor variables.

Equation (A.5) is the basis for equations (11a, 11b to
13) in the main text. Consider first the case of a model
with an intercept, 3o, and a single predictor, x,, with
parameter (3;. This gives

IV ATV TIVL(V + Vi) T (%= < %0 >)) = (1TV o) (x VI V(V + Vi) Tl (x— < %0 >))

where the V; and V,, here are to be interpreted as the
nonzero submatrices pertaining to the predictor vari-
able and its error and <x,> is the expected value of the
predictor vector, which can be estimated as <x, >1 with
< xo> =x (Vg + Vu)_ll/lT(Vd +V,)~!1. These equa-
tions are unwieldy looking, but can be greatly simpli-
fied by assuming that the predictor variables have mean
zero, and making the approximation x!'V~'1 a 0. This
gives

1"V-IV,(V,+ V) x

1TV_11 0[31’ (A7a)

E [Bolx.] ~ Bo

E[B1]x0] ~ Kp1
(1 BVIIVUVa V)
xI'V-1x,

) Br. (A7D)

With centered predictor variables, the bias in the inter-
cept would normally be small for large data sets, but this
is not true if the predictor variables are not centered, in
which case we have to use equation (A.6) above to get
a reasonable correction. This result generalizes to the
case with several (error-free) fixed effects and a single
random predictor variable. If the predictor variable is
centered on its mean, the estimates of the fixed effects
should have small bias, and the bias in the coefficient of
the random predictor is approximated by (A.7b). From
equation (A.7b), we note that observation error usually
makes the estimated slope too shallow, but, since the
matrix V-1V, (V,; + V,,)~! does not need to be positive
definite, it is possible to make K >1 and also K < 0 in
certain situations. This may occur when variation is very
asymmetric across species.

Note for completeness that centering of predictor
variables would remove one degree of freedom and
cause a correlation that ideally should be included in
the relevant variance matrices (and require a general-
ized inverse in equation (A.7) to account for the re-
sulting singularity). In practice, however, the error of
ignoring this would be small for a reasonable number
of species.

The situation with measurement error in several pre-
dictors is much more complicated. To aid intuition, we
present a few results on special cases. First, if each of
the predictor variables are biologically and observation-
ally uncorrelated across species, and each identically
distributed across species (with mean zero) such that
V; =L;®Iand V, = Z,QI, where I is an n x n identity

E[Bolx] = Bo

E[Bo|xo] = KBy = (1

(xIV—1x,)(1TV—11) — (x] V-11)2 Pr (A62)
(VI VTIVL(V + Vi) T (= < %0 >)) = (1TV %o ) (ITVTIVL(V + Vi) 7 (x0— < %o >))) B1, (A.6b)
(xIV-Ix) ATV -11) — (x] V-11)2 b
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matrix and ¥£; and £, are m x m variance matrices with
parameters describing the biological and observational
covariances between the m predictors, then

E[B|D] = (I - (zd + zu)_l):u)ﬁa (A.8)
where Iis an m x m identity matrix. This generalizes the
standard equation (12) to multiple predictors. This for-
mula is well known for independent data (e.g., Buonac-
corsi 2010, p. 109), and our derivation shows that it also
holds with a nondiagonal V matrix (only the predictors
need be phylogenetically uncorrelated, not the response
variables). The matrix £, contains the estimated obser-
vation variances and covariances of the predictors, and
the matrix £; + £, is the observed variance matrix of the
predictors. This equation shows that measurement error
in one predictor variable will typically bias the coeffi-
cients of correlated predictor variables but not those of
uncorrelated predictors. The latter result does not gen-
eralize to phylogenetically correlated predictors, how-
ever. To see this, let us assume that there are no fixed
effects in the model, and let V; and V, be block di-
agonal with mn x n diagonal blocks Vg; and V.,
respectively. With these assumptions, equation (A.5)
becomes

EBID] = (I— (D'"V'D)"'D'V ! [Viu1(Vas

) Vumm (Vdmm + Vumm) 71dm])ﬁ7
(A.9)

+VM11)71d1, c

where d; is the ith column of the D matrix. Because the
V matrix contains observation variance from all vari-
ables, this shows that observation variance in one pre-
dictor will affect the coefficients of other predictors with

the exception that the coefficient of a predictor that is
itself observed without error will not be biased by ob-
servation error in other predictors that are phylogeneti-
cally uncorrelated and homoscedastic (if V; is zero, the
coefficient 3; will be unbiased if V,j; and Vg;; are both
proportional to the identity matrix for all j).

The variance matrix of the naive GLS estimator
is Var[8|D] = (D'V™'D)~!, and conditionally on K,
the variance of the bias-corrected estimator K™'f is
Var[K'/D] = K"/(D"V™'D)~'K~". For the special
case of the single bias-corrected slope, Bl,COrrected =P / K,
the variance is Var|Bcorrectea|Xo] = 1/(K2((xIV"'x,) ™).
With |K| < 1, this variance is larger than that of an un-
corrected slope, and then the bias-corrected slope is less
precise than an uncorrected slope, and also not maxi-
mum likelihood. It is thus not given that the overall ac-
curacy is improved by bias correction (see online File A).
To explore when bias correction is likely to increase
accuracy, we can compute the mean squared errors of
corrected and uncorrected slopes. Since the mean
squared error is equal to variance plus squared bias, we
have

op /K? < ofy + (K—1)%Bi, (A.10)
where 0% = (x; V~'x,)7!, as a criterion for the mean
squared error of the bias-corrected estimator to be less
than the mean squared error of the uncorrected estima-
tor. We can immediately see that this is always fulfilled
if |[K| > 1, and if |[K| < 1, we get equation (16) in the
main text. Similar results on the accuracy of bias cor-
rection with uncorrelated data can be found in Gleser
(1992) and Fuller (1995), who also consider multiple
predictors.
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